Constraint Programming
نویسندگان
چکیده
Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, operations research, algorithms, graph theory and elsewhere. The basic idea in constraint programming is that the user states the constraints and a general purpose constraint solver is used to solve them. Constraints are just relations, and a constraint satisfaction problem (CSP) states which relations should hold among the given decision variables. More formally, a constraint satisfaction problem consists of a set of variables, each with some domain of values, and a set of relations on subsets of these variables. For example, in scheduling exams at an university, the decision variables might be the times and locations of the different exams, and the constraints might be on the capacity of each examination room (e.g., we cannot schedule more students to sit exams in a given room at any one time than the room's capacity) and on the exams scheduled at the same time (e.g., we cannot schedule two exams at the same time if they share students in common). Constraint solvers take a real-world problem like this represented in terms of decision variables and constraints, and find an assignment to all the variables that satisfies the constraints. Extensions of this framework may involve, for example, finding optimal solutions according to one or more optimization criterion (e.g., minimizing the number of days over which exams need to be scheduled), finding all solutions, replacing (some or all) constraints with preferences, and considering a distributed setting where constraints are distributed among several agents. Constraint solvers search the solution space systematically, as with backtracking or branch and bound algorithms, or use forms of local search which may be incomplete. Systematic method often interleave search (see Section 4.3) and inference, where inference consists of propagating the information contained in one constraint to the neighboring constraints (see Section 4.2). Such inference reduces the parts of the search space that need to be visited. Special propagation procedures can be devised to suit specific constraints (called global constraints), which occur often in real life. Such global constraints are an important component in the success of constraint pro
منابع مشابه
Comparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints
The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملMulti-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملBoundedness of KKT Multipliers in fractional programming problem using convexificators
‎In this paper, using the idea of convexificators, we study boundedness and nonemptiness of Lagrange multipliers satisfying the first order necessary conditions. We consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. Within this context, define generalized Mangasarian-Fromovitz constraint qualification and sh...
متن کاملA Two-Stage Chance-Constraint Stochastic Programming Model for Electricity Supply Chain Network Design
Development of every society is incumbent upon energy sector’s technological and economic effectiveness. The electricity industry is a growing and needs to have a better performance to effectively cover the demand. The industry requires a balance between cost and efficiency through careful design and planning. In this paper, a two-stage stochastic programming model is presented for the design o...
متن کامل